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1. Phys.: Condens. Matter 'l(1995) 5629-3641. Printed in the UK 

Complete solution of the XXZ-model on finite rings; 
dynamical structure factors at zero temperature 

K Fabriciusts, K-H Miittertll and U Low§? 
t Physics Depmmenr, University of Wuppertal, 42097 Wuppertal, Germany 
$ InstiNt fiir Physik. Universitat Dortmund 44221 Dortmund, Germany 

Received 21 Februiuy 1995 

Abstract. The finite-sire effects of the dynamical svucmre factors in the XYZ-model m studied 
in the euclidean time (T-) representation. Away from the critical momenmm p = II finite-size 
effgts tum out to be small except for in large-r limit. m e  large finite-size effect$ at the 
critical momentum p = n signal the emergence of infrared singularitis in the spectral (U-) 
representation of the dynamical structw factors. 

1. Introduction 

Based on a complete diagonalization of the XYZHamiltonian: 
N 

H = 2 C [ s * ( X ) S l ( X +  I ) + s z ( x ) s 2 ( x +  1)+cosys3(x)S3(x+ 1)1 (1.1) 
X = l  

on finite rings with N = 4,6,. .., 16 sites and anisotropy parameter Y/R = 
0.0,0.1,0.3,0.4,0.5 we reported in [ l ]  and [Z] on the thermodynamics and the static 
structure factors at finite temperature. In this paper we continue ow numerical investigation 
of the XYZ-model with an analysis of the dynamical structure factors: 

Sj(% P ,  T. Y. N) 
= Z-' - (En - Em)) S ( P  - P. + pm) 

n 

x exp (-$) I(nlsj(O)lm)tZ j = 1.3. (1.2) 

Z is the partition function and In) denotes an eigenstate of the Hamilton operator and of 
the momentum operator with eigenvalues E.  and pn, respectively. The dynamical structure 
factors contain the information on the Lransition probabilities I(nlsj(O)lm)I* between the 
eigenstates n and m with an excitation energy w = E,, - E,  and a momentum transfer 
p = pn  - pm.  At T = 0 and p = n the XXZ-model is known to be critical and here 
one expects that quantum effects become most important. Therefore, most of the previous 
studies were concentrated on the ground-state behaviour. There exist analytical results on 
the dynamical correlation functions for the special case y = n/2,  i.e for the =-model 
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[MI. This model can be mapped on a free fermion system [7] by means of a Jordan 
Wigner transformation. For the general case 0 < y < a/2, the spechvm of the low-lying 
excitation energies has been exploited by des Cloiseaux and Pearson [SI. In particular it 
was found from the Bethe ansatz solution that there is a lower bound 

n .  
En-.& ) E i ( p i , y ) - E o ( p o , ~ ) = o i ( p , y ) =  -stnysinp 

Y 
for the excitation energies depending on the momentum hmsfer p = p1- pa. Approaching 
the boundary (1.3) the structure factors diverge [9]: 

(1.3) 

where 

Starting from these rigorous results G MiiUer and collaborators [lo] made an matz for 
the dynamical structure factors which has been applied successfully on the description of 
neutron scattering data [ I l l .  

The outline of the paper is as follows. In section 2 we present our results on the 
dynamical structure factors at p = R and N = 4,6, .._, 16. We make use of the euclidean 
time representation, which is particularly suited to analysing finitesize effects. In section 3 
we demonstrate bow infrared singularities emerge on finite systems. In section 4 we report 
on our results for noncritical momenta p < R. 

2. Finite-size behaviour of the dynamical structure factors at p = 7r and T = 0 

In the critical regime: 

P - t R  T + O  N + C C  (2.1) 
the dynamical structure factors (1.4) develop infrared singularities. We want to investigate 
how these singularities show up on finite systems, where the structure factors are sums of 
&function contributions. Finite-size effects are not so easy to analyse and we therefore 
look for a smoothening procedure which allows us to extract the thermodynamical limit 
from finite systems. For this purpose let us consider the Laplace transforms of the structure 
factors. At T = 0, p = H they acquire the following form: 

(2.2) 

The variable z can be interpreted as a euclidean time. At z = 0 we recover the static 
structure factors which behave for N + 03 as [12]: 

sj(s,  p = n. T = 0, y ,  N )  = C6(p, - po - R)e-r(E"-Eo)l(,Isj(0)10)12. 
">O 

with critical exponents C91: 

r7l(Y) = w)-' = 1 - 5. (2.4) 

According to (2.3) and (2.4) the longitudinal structure factor stays finite whereas the 
transverse one diverges. This divergence originates from the infrared singularity (1.4) which 
is integrable for the longitudinal case ( 2 ~ 3 ( y )  -= 1) but nonintegrable in the transverse case 
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( 2 q ( y )  > 1). On finite systems the infrared singularities are not visible directly due to the 
gap: 

Oi(p = Z, Y, N )  El - Eo = O ( N - l )  (2.5) 

between the ground-state energy EO and the energy El of the first excited state. In the 
following we consider the Laplace transform (2.2) normalized to the corresponding static 
structure factor: 

Sj ( r ,  p = IT, T = 0. y ,  N )  
j = 1 , 3 .  (2.6) S,(r = 0, p = Z, T = 0, y ,  N )  Rj ( r ,  Y .  N )  = 

By construction these ratios are monotonically decreasing with r and varying between 1 
and 0 for T 0. Figures l(a), (b). 2, 3(a), (b) present the ratio (2.6) for the longitudinal 
case at y/n = 0.5,0.3, the isotropic case y = 0, and the transverse case at y/x = 0.3,0.5, 
respectively. Going from figure l(a) to figure 3(b) we observe the following characteristic 
features: 

(i) Finite-size effects are small in the longitudinal case at y / n  = 0.5 and increase with 

(ii) Finite-size effects are large in the transverse case and increase with increasing values 

(iii) The ‘half width‘ 7(Rj  = 0.5, y)-defined as the value of 7 ,  where the ratio (2.6) 

decreasing values of y .  

of y .  

has dropped to Rj = 0.5-moves systematically: 

r(R3 = 0.5, y = 0 . 5 ~ )  < r(R3 = 0.5, y = 0.3~) r ( R  = 0.5, y 0) 
c r(R1 = 0.5, y = 0.3~) < r ( R 1  = 0.5, y = 0 . 5 ~ ) .  (2.7) 

As will be shown below, this property is related to the strengthening of the infrared 
singularity (1.4) according to (1.5): 

%(0.5Z) < (u3(0.3Z) 4 a(0) < c~i(0.3Z) < Ei(0.5Z). 

The integrability of the infrared singularity in the Laplace transform (2.2) for the longitudinal 
case means that the ratio (2.6): 

(2.8) 

converges to a scaliig curve R3(7, y) .  The large-r behaviour of the scaling curve is given 
by the infrared singularity (1.4): 

R3(7, Y .  N + 00) = R3(r. Y )  

We have tried to determine the inverse r = r (R3,  y )  of the scaling curve from a finite-size 
analysis of our results for N = 4,6. ..., 16 with a parametrization: 

(2.10) 

We fixed the parameters t ( R 3 .  y ) ,  B(R3, y ) .  p(R3,  y )  at N = 12.14.16. We checked 
the validity of (2.10) by comparison with our low-N data (N = 4,6,8,10). The dashed 
curves in figures l(a), I(b) represent the resulting scaling curve Ra(7, y )  for y = 0.5~ and 
y = 0.317, respectively. The exponent p3(R3, y )  decreases with decreasing values of R3 
and y ,  which is a signal for increasing finite-size effects. This feature is easy to understand. 
With increasing values of 7 the low-energy excitations get a stronger weight in the Laplace 
transform (2.2). On the other hand, the spectrum of low-energy excitations is particularly 
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Figure 1. The ntios (2.6) of the dynamical strucNre facton at p = n Venus the logarithm of 
the euclidean time T: (a) longitudinal y = nJZ (b) longitudinal y = 0.3n. The dashed curves 
represent the e r m e  of the thermodynamical limit according to (2.10). The dotted curves are 
the integrals (2.13). 

sensitive to the finiteness of the system. We can compare our scaling curve R~(T. y )  with 
the ansafz of Muller et a1 [lo] for the longitudinal structure factors: 
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Figure 2. As figure I ,  but for the isotropic case y = 0. 

where B ( x .  y )  is the beta-function. In this m u t z  the high-frequency excitations are cut off 
at 

sin y 
oz(y) = 2n-. 

Y 
(2.12) 

The m u t z  coincides with the exact result of Katsura et ul [4] in the XX-limit y = ~ / 2  and 
leads to the following expression for the ratio (2.6): 

(2.13) 

The integral (2.13) is represented in figures l(a),(b) by the dotted curves. For the XX- 
case y = x /Z ,  we find good agreement of our determination of R3(5. y )  with the exact 
result (2.13). This agreement supports our hypothesis, that the finite-size effects can be 
parametrized adequately by the matz (2.10). For y = 0.3n, our finite-size analysis leads 
to a scaling curve R~(T. y )  which differs significantly from the prediction (2.13). This 
discrepancy might originate from the sharp cut-off (2.12) in the high-frequency excitations. 

3. The nonintegrable infrared singularity in the transverse structure factors at p = R 
and T = 0 

Let us assume that the transverse smcture factor can be split into two parts. The first one 
contains the nonintegrable infrared singularity (( 1.4) for j = 1): 
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Figure 3. As figure 1. but for (a)  transverse y = 1/3n and (b) Vansvene y = I/&. 

The second one is assumed to be free of such a singularity. We have introduced an 
exponential cut-off for the high-frequency contributions in the first term with a parameter TO, 
which will be fixed below. The factor A(o/o,, y )  is supposed to describe the approach to 
the infrared singularity. For 01 + 0, A(o/ol, y )  is assumed to converge to a nonvanishing 
value for the residue &CO, y )  of the infrared singularity. Starting from (3.1) we find for 
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the ratio (2.6) in the limit w1 + 0: 

where 
m 

h ( x ,  Y) = [ dy (Y' - l)"'e"Y&y, v) 

l i(r ,  y )  = [doSi(o.  y)e-OT. 

(3.3) 
1 

and 
m 

(3.4) 
0 

In the combined limit: 

N+CO r + m  x = o l ( r + % )  fixed (3.5) 
we expect the ratio (3.2) to converge to a scaling function 4 ( x ,  y) / I l (O,  y ) ,  since 
2 q  - 1 z 0 for 0 < y < n/2. The scaling function (3.3) depends on the parametrization of 
the first contribution in (3.1). The cut-off parameter ro enters in the finitesize corrections 
to the scaling variable x .  The scaling curve depends explicitly on A(y, y ) .  The scaling 
behaviour of the ratio (3.2) in the combined limit (3.5) has an immediate consequence for 
the 'half width': 

I n ( r ( R 1 , y , N ) + r o ) = - I n w l ( N ) 3 . I n x ( R 1 , y ) +  ... (3.6) 
which diverges for N + CO. Therefore on finite systems, the signature for the emergence 
of the nonintegrable infrared singularity is a linear increase of the half width with In N and 
with slope 1. This behaviour should be observable not only for RI = 0.5 but for any fixed 
value of RI  between 0 and 1. In figure 4 we have plotted the left-hand side of (3.6) with 
ro = 0 versus - Inwl(N) for RI = 0.75,0.5,0.25 and y/n = 0.5. The linear behaviour 
in - Inot(N) is clearly seen and the slopes 0.82,0.92,0.96 are found to be rather close to 
the expectation, namely 1. The second term in (3.6) (x(R1, y ) )  is the inverse of the scaling 
function II(x,  y ) / I1 (0 ,  y ) .  The behaviour of the scaling function for small values of the 
scaling variable x = 01 ( r  + So): 

(3.7) 

is governed by the exponent 011 of the infrared singularity. 
So far our discussion of the nonintegrable infrared singularity is restricted to the 

transverse case with anisotropy n/2 > y > 0. In the isotropic case y = 0. a1 = 013 = 0.5 
the integral (3.3) diverges logarithmically for x + 0 

(3.8) 

(3.9) 

il(x + 0, y )  - it(o, V )  = -&CO, y ) r ( i  - Z U ~ ) X ~ ~ - '  

I , (x ,y  =O) = -d(CO.y =O)Inx. 

From (3.8) we predict that the 'half width' in the isotropic case: 

InIr(R1, y = 0, N) + SO] = ( R I  - I )  Inwl(N) + C(R1) + ... 
increases with InN but with a slope (1 - RI) depending on RI .  Again this behaviour is 
visible even on small systems, if we make a proper choice for = 0.2, as can be seen 
from figure 5. The observed slopes have the correct RI-dependence. Their absolute value 
differs from the expectation by about 10%. 
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Figure 4. The finite-size behaviour of hr along the horizontal lines RI = 114. 112.314 shown 
in figure 3(b). 
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Figure 5. 
R = 1/4.1/2.3/4 shown in figure 2, 

The finite-size behaviour of In(r + To). g, = 0.2 along lhe horizontal lines 

4. Dynamical structure factors in the noncritical regime 

Leaving the critical momentum p = IT the threshold singularities in the dynamical structure 
factors change in position and strength. The singularity moves according to (1.3) to 
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Figure 6. The ratios (4.1) of the dynamical structure factors at noncritical momenta versus In T :  
(a)  isotropic p i n  = 1/4,3/4, N = 8. 16; (b) isotropic p i n  = 112, N = 4. 8,12. 16. 

nonvanishing frequencies o = w ~ ( p ,  y ) ;  its strength is reduced to (o-w1)-'j. The threshold 
singularity is integrable now, since U, c 1 for j = 1,3 and the Laplace transforms of the 
transverse and longitudinal structure factors exist for all nonnegative 7-values, if 0 c p c II , 
The ratios 

converge to a limiting function in 5 .  Its large-7 behaviour is given by the threshold frequency 
(1.3) and the strength of the threshold singularity: 

(4.2) 
We have determined the ratios RI  and R3 as function of r at fixed noncritical momenta and 
for various values of y .  We found extremely small finite-size effects. Moreover the ratios 
(4.1) almost coincide for the different values of y and for the longitudinal and transverse 
case. We only observe a weak dependence on the momentum p .  As an example we present 
in figure 6 the results for the isotropic case ( y  = 0) at fixed momenta p / r  = 1/4,3/4,1/2. 
The first two momenta can be realized for N = 8, 16. Here finite-size effects cannot be 
resolved in the plot of the ratio (4.1). The origin of the In 7-axis has been shifted by 2 in 
order to present the results for p = r / 2 ,  N = 4,8, 12, 16. Again the ratios (4.1) coincide 
for N = 8, 12, 16, whereas the result for N = 4 is found to the left of them. 

Significant finite-size effects only appear for large values of r and are visible in the 
quantities @ ( t i ,  y ,  N )  which are related to the ratios (4.1) via 

(4.3) 

(4.4) 

r-rbo R,(T, p .  y )  -+ exp(-olr)s"i-'. 

Rj(r, Y, N )  = / 1  + pj(tj, Y, iW1-l 

where 
t .  - 71-ul , - exp(wT). 
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According to (4.2). pj(rj,  y ,  N = 00) should be linear in 0 for tj  -+ 00. In figure 7 we show 
this quantity for the isotropic case at p = x / 2  and N = 4.8, 12,16. The linear behaviour 
in r becomes more and more apparent with increasing system size. We can compare out 
results for the longitudinal case with the prediction: 

&(7, p ,  y )  = /do (0’ - d~?)-~J(w$ - 02)-’/2t03e-wr (4.6) 
at 

which follows from the ansafz of Muller er a1 [lo]. In (4.6) the lower and upper integration 
bounds are given by (1.3) and 

o2(p, y )  = -sin 2 R  . y sin -, P 
Y 2 (4.7) 

respectively. The prediction is found between the finitesystem results for N = 12 and 
N = 16 (cf. the dotted curve in figure 7). Better agreement with the expected behaviour in 
the thermodynamical limit can be achieved for example by lowering the upper integration 
bound in equation (4.6). This, however, would violate the sum rules of [13]. To our 
knowledge there does not yet exist a generalization of the ansatz of Muller et a1 [IO], which 
respects the sum rules in [13]. 

500.0 

400.0 

300.0 - 
9 
7 H 200.0 
.+ 
0 

100.0 

0.0 
0.0 50.0 100.0 150.0 200.0 

t&eX 

Figure 7. The quantity p(1, p = n/2. y = 0, ?+defined in (4.3)-versus r-defined in (4.4). 
The dashed curve is the prediction (4.3, (4.6). 

In figure 8 we show the ratio R as function of the momentum p (0 c p e n) and at 
fixed r = 0.5, y / x  = 0.0, N = 4,6, .  . . 16. All these data points nicely follow one curve 
in the ‘scaling’ variable p. Again this means that the thermodynamical limit is seen already 
on small systems. 
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Figure 8. The ratio 14.1) of the dynamical structure factors at fixed euclidean time I = 0.5 
versus momentum p and for N = 4.6. , . . , 16. 

5. Conclusions 

In this paper we started a first attempt to extract the dynamical structure factors of 
the XXZ-model from a complete diagonalization of the Hamiltonian on finite rings with 
N = 4,6, . . . 16 sites. We studied the normalized ratios (2.6) of the dynamical structure 
factors as function of the euclidean (imaginary) time r and found the following features: 

(i) Away from the critical momentum p = A finite-size effects are small except for in 
the larger limit, where we find a clean signal for the threshold singularity (1.4). 

(ii) At the critical momentum p = A finitesize effects am still small in the longitudinal 
case at y = a/2 but increase for decreasing values of y .  These finite-size effects can be 
described adequately by the ansa@ (2.10). The resulting thermodynamical limit (2.9) for 
the ratio (2.6) is in good agreement with the exact result of Katsura er al [4] at y = n / 2  
but deviates from the prediction (2.13) of Muller et al [IO] for smaller values of y .  

(iii) At the critical momentum p = x finite-size effects are large in the transverse case 
and increase rapidly with increasing values of y .  It was demonstrated in section 3 that this 
behaviour signals the emergence of the (nonintegrable) infrared singularity in the transverse 
structure factor. 

Therefore we can conclude that the euclidean time representation is particularly suited 
for the study of Enite-size effects, which allows for a crude estimate of the thermodynamical 
Limit. This estimate is already precise enough to check the gross features of a model 
ansafz [IO] for the dynamical correlation functions in the spectral (w-) representation. To 
resolve the fine structure, however-i.e. the detailed form and cut-off of the nonsingular 
contributions-one has to know the euclidean time dependence very precisely. In other 
words: The reconstruction of the spectral (w-) representation from the euclidean time ( 5 - )  

representation demands for an analytic continuation and tiny errors in the r-representation 
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might produce large errors in the o-representation. Of course this problem would not occur 
if finite-size effects could be analysed systematically in the spectral representation. The 
continued-fraction method used in [14] might open up this possibility. 

Our exact results on small systems might be useful as a test for those, who plan to 
develop approximative calculations on larger systems. For this purpose we present in 
appendix A our results for the first nine excitation energies with the corresponding transition 
probabilities at fixed p / a  = 1 / 4 ,  1/2,3/4. 1;  N = 16; y = 0. 

Appendix A. Excitation energies and transition probabilities for N = 16 

In table A1 we present the excitation energies on = E. -Eo and the transition probabilities 
t. = I(nls,(0)1O)l2 for the isotropic case at fixed momenta p / n  = 1/4,1/2,3/4, 1. 

Table AI. 

S(r = 0, p = n/4) = 2.982766323 17824 x IO-' S(i = O .  p =n/2)  = 0.679437576126672 
UJn(R/4) t.(n/4) uJ"(XI2) tdnI2) 

2.30261899538436 2,94237604448345 IO-' 3.38066138588931 5.84557616588252 x IOw1 
4.29305867857873 3.263 17936539563 x IO4 4.19713536357146 8.753351 30248142 x 10-2 
4,550 193 77043269 2.558961 696679 15 x 4.59757074255291 4.164 84504934824 x 
5.00373864011045 2,16897422554017 x IOF4 4.738715285730ll 1,00961950227532 x IO-) 
5.56892568932023 8.32876542259278 x IO-' 4.90280915101872 6.60897218681834~ 
5.781 39338722018 1.30702193321460 x 5.35132697794261 1.17091017648893 x 
5.84500569454930 4.97880013858312 x 5.89030536873391 2,04831697796575 x 
6.290136 18714556 2.13454771246274 x IO-' 5.92901985838870 1.27434335470092 x IO-) 
6.332 12143869286 1.26096012286078 x IO-' 6.475753895 11423 5.635 17350683256 x IO-' 

S(r = 0, p = 3n/4) = 1.32305343430234 S(r = 0. p = n) = 4.29230350827985 
m"(3n/4) l"(3n14) o.(n) r.hl  ... , .  
2.638 130434568 I 1  
3.411 53204282532 
4.330655742 11427 
5.035 832 362017 23 
5.440678 860 837 06 
5.46270297857887 
5.980403221 35934 
6445855721 18417 

... . .  ... . 
1.02102198318191 0.540 379 364 500'5i 
1.02545237335683 x 2.792061 172 19889 
2.45752087828875 x IO-' 4.66859660533213 
1.18879754929133 x IO@ 5.47594709145050 
5.871 093 21 I 458 63 x 5.907 016581 34804 
5.22628990055292 x IO-' 5.99408178622140 
1,06884234982829 x IO-' 6.57325345602260 
3.08052603394593 x IOw5 6.802832461 833 18 

... . 
3.439 616 887 898 93 
6.05607890324550 x IO-' 
2.00416101651547 x IO-( 
7.023054488 151 08 x 
4.485036273 12539 x 10-l 
4.45448599279042 x 

2.87699128786244 x 
6.661055818870~4 x 10-4 

6.64303864126450 7.254113 18058785 x IO-' 7.14462784940782 1.98076177494986 x 
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